3.2.49 \(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx\) [149]

Optimal. Leaf size=119 \[ -\frac {(3 A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(3 A-B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \]

[Out]

-(3*A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A-B)*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+(3*A-B)*sin(d*x+c)/a/d/co
s(d*x+c)^(1/2)-(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3057, 2827, 2716, 2719, 2720} \begin {gather*} -\frac {(A-B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(3 A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(3 A-B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])),x]

[Out]

-(((3*A - B)*EllipticE[(c + d*x)/2, 2])/(a*d)) - ((A - B)*EllipticF[(c + d*x)/2, 2])/(a*d) + ((3*A - B)*Sin[c
+ d*x])/(a*d*Sqrt[Cos[c + d*x]]) - ((A - B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x]))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx &=-\frac {(A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} a (3 A-B)-\frac {1}{2} a (A-B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{a^2}\\ &=-\frac {(A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))}-\frac {(A-B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {(3 A-B) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{2 a}\\ &=-\frac {(A-B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(3 A-B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))}-\frac {(3 A-B) \int \sqrt {\cos (c+d x)} \, dx}{2 a}\\ &=-\frac {(3 A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(3 A-B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.74, size = 1130, normalized size = 9.50 \begin {gather*} -\frac {3 i A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {2 e^{2 i d x} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) \sqrt {e^{-i d x} \left (2 \left (1+e^{2 i d x}\right ) \cos (c)+2 i \left (-1+e^{2 i d x}\right ) \sin (c)\right )} \sqrt {1+e^{2 i d x} \cos (2 c)+i e^{2 i d x} \sin (2 c)}}{3 i d \left (1+e^{2 i d x}\right ) \cos (c)-3 d \left (-1+e^{2 i d x}\right ) \sin (c)}-\frac {2 \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) \sqrt {e^{-i d x} \left (2 \left (1+e^{2 i d x}\right ) \cos (c)+2 i \left (-1+e^{2 i d x}\right ) \sin (c)\right )} \sqrt {1+e^{2 i d x} \cos (2 c)+i e^{2 i d x} \sin (2 c)}}{-i d \left (1+e^{2 i d x}\right ) \cos (c)+d \left (-1+e^{2 i d x}\right ) \sin (c)}\right )}{4 (a+a \cos (c+d x))}+\frac {i B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {2 e^{2 i d x} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) \sqrt {e^{-i d x} \left (2 \left (1+e^{2 i d x}\right ) \cos (c)+2 i \left (-1+e^{2 i d x}\right ) \sin (c)\right )} \sqrt {1+e^{2 i d x} \cos (2 c)+i e^{2 i d x} \sin (2 c)}}{3 i d \left (1+e^{2 i d x}\right ) \cos (c)-3 d \left (-1+e^{2 i d x}\right ) \sin (c)}-\frac {2 \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i d x} (\cos (c)+i \sin (c))^2\right ) \sqrt {e^{-i d x} \left (2 \left (1+e^{2 i d x}\right ) \cos (c)+2 i \left (-1+e^{2 i d x}\right ) \sin (c)\right )} \sqrt {1+e^{2 i d x} \cos (2 c)+i e^{2 i d x} \sin (2 c)}}{-i d \left (1+e^{2 i d x}\right ) \cos (c)+d \left (-1+e^{2 i d x}\right ) \sin (c)}\right )}{4 (a+a \cos (c+d x))}+\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (\frac {(2 A+A \cos (c)-B \cos (c)) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec (c)}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {4 A \sec (c) \sec (c+d x) \sin (d x)}{d}\right )}{a+a \cos (c+d x)}+\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\text {ArcTan}(\cot (c))) \sqrt {1-\sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {1+\sin (d x-\text {ArcTan}(\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\text {ArcTan}(\cot (c))) \sqrt {1-\sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {1+\sin (d x-\text {ArcTan}(\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])),x]

[Out]

(((-3*I)/4)*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((
2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I
*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*
(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sq
rt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*
c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*C
os[c + d*x]) + ((I/4)*B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7
/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Si
n[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos
[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[
c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d
*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c]))
)/(a + a*Cos[c + d*x]) + (Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*(((2*A + A*Cos[c] - B*Cos[c])*Csc[c/2]*Sec[c
/2]*Sec[c])/d + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/d + (4*A*Sec[c]*Sec[c + d*x]
*Sin[d*x])/d))/(a + a*Cos[c + d*x]) + (A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Si
n[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[
1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])*
Sqrt[1 + Cot[c]^2]) - (B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[C
ot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Si
n[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^
2])

________________________________________________________________________________________

Maple [A]
time = 0.39, size = 319, normalized size = 2.68

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (3 A -B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (5 A -B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(319\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*(cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x
+1/2*c),2^(1/2))-3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2)))-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A-B)*sin(1/2*d*x+1/2*c
)^4+(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A-B)*sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/sin(
1/2*d*x+1/2*c)^3/(2*sin(1/2*d*x+1/2*c)^2-1)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 290, normalized size = 2.44 \begin {gather*} \frac {2 \, {\left ({\left (3 \, A - B\right )} \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-3 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-3 i \, A + i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (\sqrt {2} {\left (3 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (3 i \, A - i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(2*((3*A - B)*cos(d*x + c) + 2*A)*sqrt(cos(d*x + c))*sin(d*x + c) + (sqrt(2)*(I*A - I*B)*cos(d*x + c)^2 +
sqrt(2)*(I*A - I*B)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-I*A +
 I*B)*cos(d*x + c)^2 + sqrt(2)*(-I*A + I*B)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x
+ c)) + (sqrt(2)*(-3*I*A + I*B)*cos(d*x + c)^2 + sqrt(2)*(-3*I*A + I*B)*cos(d*x + c))*weierstrassZeta(-4, 0, w
eierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + (sqrt(2)*(3*I*A - I*B)*cos(d*x + c)^2 + sqrt(2)*(3
*I*A - I*B)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(
a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))), x)

________________________________________________________________________________________